

$$\sigma = \varepsilon E$$

Gauge Factor (GF) - Summary

• Gauge factor (GF) is the ratio of relative change in electrical resistance R, to the mechanical strain ε_a :

$$\varepsilon_a = \frac{1}{GF} \frac{\Delta R}{R}$$

• It is also calculated using Poisson's ratio μ

$$GF = 1 + 2\mu$$

• GF is a number provided to you by those who manufacturer strain gauges.

Grid Material	Composition	Appprox. Gage Factor, F	Approximate Resistivity		Approximate Temperature Coefficient of	Maximum Operating
			Micro- ohm · cm	Ohms per mil · foot	Resistance, ppm/°C	Temp., °C (approx.)
Nichrome V*	80% Ni; 20% Cr	2.0	108	650	400	1100
Constantan*, Copel*,	45% Ni; 55% Cu	2.0	49	290	11	480
Advance*						
Isoelastic*	36% Ni; 8% Cr; 0.5% Mo; Fe remainder	3.5	112	680	470	_
Karma*	74% Ni; 20% Cr; 3% Al; 3% Fe	2.4	130	800	18	815
Manganin*	4% Ni; 12% Mn; 84% Cu	0.47	48	260	11	—
Platinum-Iridium	95% Pt; 5% Ir	5.1	24	137	1250	1100
Monel*	67% Ni; 33% Cu	1.9	42	240	2000	_
Nickel		-12†	7.8	45	6000	_
Platinum		4.8	10	60	3000	_

Loaded Cantilever Beam Example

You must either know the load P or the displacement, v(x).

strain gage a

 $\mathbf{x} = \mathbf{b}$

Determine displacement (v) at x = a

Knowing beam dimensions and material (and hence EI) estimate the load.

$$v = \frac{-Px^2(3a-x)}{6EI}, \text{ so } P = 3\frac{vEI}{a^3}$$

Calculate stress at location of gauge

$$\sigma = \frac{My}{I} = \frac{P*b*h/2}{I}$$
, where h = beam thickness

Beam length,

Displacement, v(x)

Calculate e from s = eE

The natural frequency of a uniform beam is given by: $\omega_n = (1.875)^2 \sqrt{\frac{EI}{m'L^4}}$ E is the modulus of elasticity, I is the moment of inertia about the centroid of the beam cross-section (bh³/12), m' is the mass per unit length of the beam (ie kg/m), and L is the cantilevered beam length. $v(x) = \int_{x=b}^{x} \int_{a}^{x} \int_{a}^{b} \int_{a}^{$

